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This paper discusses the dynamical properties of p-spin models with Kac interactions.
For large but finite interaction range R one finds two different well separated time scales
for relaxation. A first short time scale, roughly independent of R, on which the system
remains confined to limited regions of the configuration space and an R dependent long
time scale on which the system is able to escape from the confining regions. I will
argue that the R independent time scales can be described through dynamical mean
field theory, while non-perturbative new techniques have to be used to deal with the R
dependent scales.
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1. INTRODUCTION

Mean-Field spin glass model, describe glassy phenomena as sharp ergodicity
breaking transitions. (1) It is well known that in that context two basic route to
glassiness are found. In the SK and similar models, one finds second order phase
transitions with a diverging susceptibility and a continuous order parameter. (2) In
p-spin models, one finds a transition, of the second order kind from a thermo-
dynamic point of view displays a first order jump in the order parameter. (3) The
SK model was proposed as possible starting points to understand the physics of
spin glass materials. In this contribution will concentrate instead on p-spin like
models, which have deserved a lot of attention in the theoretical physics com-
munity as possible mean-field schematization of the structural glass transition of
supercooled liquids. (4) What makes these models interesting in this connection
is the presence a non-ergodic phase where the partition function is dominated by
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an exponential number of metastable states. In this phase, entered at a transition
temperature Td , the relaxation time to equilibrium is infinite and off-equilibrium
dynamics falls into an asymptotic aging states with internal energy extensively
higher then the equilibrium one. (5)

As the Cortona meeting has testified, progresses have been recently achieved
in the comprehension of both the thermodynamics and the dynamics of Mean-Field
models. On one hand, the Guerra. (6) and Talagrand. (7) analysis shows that Parisi
ansatz, which in these models take the simple one step form, describes well the
thermodynamics, on the other Ben Arous et al. (8) could prove that the physicist’s
equations—and underlying assumptions leading to their derivations—can be fully
mathematically justified.

The situation is much less clear as one wants to deal with systems with
finite range interactions. The low temperature properties of finite range spin-glass
models, despite remarkable attempts of mathematical analysis. (9) remain an open
issue of scientific discussion. While there is no consensus about the fate of mean-
field thermodynamical spin glass phases when the range of interaction is finite, it is
clear that the metastability phenomena associated to the dynamical transition in p-
spin models should become cross-overs as soon as one goes to systems with finite
range of interaction. Possible scenarios for this cross-over have been put at the
basis of a phenomenological theory of the glass transition known under the name
of ‘random first order transition scenario’ which describes activated processes
responsible for ergodicity restorations in terms of an effective droplet model
where a bulk restoring force proportional to the configurational entropy competes
with interface free-energy terms that oppose to relaxation.(4,10−12) Computations
of the resulting effective barrier in the context of microscopic models have been
presented in Refs. 13 and 14 Many researchers believe that an accomplished
microscopic theory of this cross-over could provide important hints about the
relaxation processes in supercooled liquids and the glass transition. (15)

In order to understand the relation between mean field and finite range systems
one can use the classical tool of Kac models, (16) where the interaction range R is
considered a tunable parameter. One would like first to understand the equilibrium
and dynamics in the Kac of infinite interaction range. (16,17) Then to study the
dynamics and metastability effects in an asymptotic expansion in R. Recently a
full mathematical control of the Kac limit for thermodynamics has allowed to prove
convergence of free-energy and local correlations to the the mean-field values in
p-spin models for even p. (18,19) In this paper I would like to extend the analysis to
the dynamics. In particular I will consider the case of the p-spin model and study:
(a) the dynamics in the Kac limit (b) the form that the relaxation time should take
in an asymptotic expansion in the range of interaction. This will lead to a picture
where the long time relaxation can be seen as a passage from metastable state to
metastable state, and the relaxation time computed as a decay rate. The analysis I
will present will rely strongly on heuristic derivations. I believe that the analysis
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of the Kac limit, clear from the physical point of view, can be made fully rigorous
adapting the techniques developed in Ref. 8 for the mean field case. Conversely,
the dynamics on the large, R dependent time scales, remains to a large extent a
challenge for theoretical physics, and the mathematical analysis seems to me far
away in time.

In several occasions in this paper I will refer to the dynamical and static
properties of the mean-field p-spin model as they are known from the physicist’s
analysis. For many of these properties mathematical proofs are lacking. Through-
out my reasoning I will ignore this fact and assume that the mentioned properties
are correct.

Some of the results presented in this paper have appeared in a condensed
form in Refs. 13 and 20.

2. THE KAC SPHERICAL p-SPIN MODEL

In order to study the relaxation in a Langevin setting, I use the locally
spherical version of the Kac p-spin model introduced in Ref. 18. Consider �L =
{1, 2, . . . , L}d the hyper-cubic lattice of size L and periodic boundary conditions,
partitioned into hyper-cubic boxes Bx of size � (L/� is a large integer), x ∈ �L/�.
The model is defined in terms of real variables Si ∈ R subject to the local spherical
constraint |�−d

∑
i∈Bx

S2
i − 1| < ε for some small ε and interacting through the

random Hamiltonian

H (S) = −
∑

(i1,...,i p)∈�
p
L

Ji1,...,i p Si1 . . . Si p (1)

where the couplings Ji1,...,i p are for each p-uple of the lattice i.i.d. normal variables
with zero mean and variance

E
(
J 2

i1,...,i p

) = 1

R pd

∑

l∈�L

ψ(|l − i1|/R) . . . ψ(|l − i p|/R). (2)

The function ψ : R+ → R+, is chosen to be positive ψ(x) ≥ 0 and normalizable,∫ ∞
0 ψ(x)dx = 1. Notice that only variables that are at distances of order R or

lower can effectively interact. The usual mean-field model is recovered choosing
R = L and ψ(x) = 1x≤1. I will consider instead the following regimes: (a) the
Kac limit where L → ∞, R → ∞, � → ∞ in the specified order, (b) the regime

L � R � � � log(L) (3)

where non trivial finite dimensional effects can be expected to take place. (21)

Consider the Langevin dynamics

d Si (t)

dt
= −µx (t)Si (t) + p

∑

(i2,...,i p)∈�
p−1
L

Ji,i2,...,i p Si2 (t) . . . Si p (t) + hi (t) + ηi (t)
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(4)

where the µx (t) form a set of Lagrange multipliers chosen in such a way to enforce
the spherical constraint in average at each time: E〈�−d

∑
i∈Bx

Si (t)2〉 = 1, and ηi (t)

is white noise with amplitude
√

2T and hi (t) is an arbitrary extra field term that
will be used to generate response functions. The equation will be interpreted in
the Ito sense, and will be thought to be regularized at small times (e.g. discretized)
so that a regular solution-differentiable with respect to h- will exist at all times.

Below the temperature Td =
√

(p(p − 2)p−2/(p − 1)p−1) the mean field
model is in a non ergodic regime. One can expect for finite R the existence
of two kind of time scales: time scales independent of R, which should coincide
with the ones of the corresponding mean field model and are ineffective to relax
at low temperature, and R dependent time scales on which there is ergodicity
restoration. In order to understand the dynamics of the systems, it is interesting
to consider its evolution in the Kac limit, where, in the order, L → ∞, R → ∞,
� → ∞ for fixed value of time. I would like to argue that for uniform initial
conditions, the local correlation and response functions, defined respectively as

C L ,R,�
x (t, u) = 1

�d

∑

i∈Bx

Si (t)Si (u)

RL ,R,�
x (t, u) = 1

2T �d

∑

i∈Bx

Si (t)ηi (u) (5)

tend with probability one to non-random functions C(t, u) R(t, u) of the time
arguments t and u, independent of x that verify the usual equations describing the
dynamics of the mean field model (see e.g. Ref. 5 for their detailed form and a
review of mean-field off-equilibrium dynamics).

Unfortunately, I cannot at the moment offer a proof of this statement. I would
like however to discuss the indications that this is the case. The derivation parallels
derivation in the usual mean field case, and shows that large R in the Kac case is
analogous to large N in the mean field case.

2.1. An Exact Equation

In this Sec. 1 derive an exact equation, valid for all values of the parameters
and all kind of initial conditions, that is a consequence of the Gaussian distribution
of the couplings. Consider observables A[S, η] depending on the values of the
variables and the Brownian noise at different times. Choices of interest will be
A[S, η] = Si (u) and A[S, η] = ηi (u). I will denote with angular brackets 〈·〉 the
average over the initial conditions and the thermal noise, and with E(·) the average
over the quenched couplings Ji1,...,i p . From the Langevin equation, using partial
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integration on the Gaussian couplings one gets:

E

〈
d Si (t)

dt
A[S, η]

〉

= −E〈µx (t)Si (t)A[S, η]〉 + 〈A[S, η](ηi (t) + hi (t))〉

+
∑

(i2,...,i p)∈�
p−1
L

E(Ji,i2,...,i p )2 E
∂

∂ Ji,i2,...,i p

×〈A[S, η]Si2 (t) . . . Si p (t)〉 (6)

In order to make explicit the J derivative, one can use the Martin–Siggia–Rose,
Girsanov representation of the joint probability of paths Si (t) and Brownian noise
ηi (t) starting from an initial condition Si (0) chosen with probability µ(S(0))

P[S, η]µ(S(0)) =
∫ ∞

−∞

t∏

u=0

d Ŝi (u)

2π
exp

(
∑

i∈�

∫ t

0
du

{

i Ŝi (u)

[

Ṡi (u) + µx (u)Si (u)

+
∑

(i2,...,i p)

Ji,i2,...,i p Si2 (u) . . . Si p (u) + hi (u) + ηi (t)

]

− 1

2T
η2

i (u)

})

µ(S(0)) (7)

and observe, through integration by part, that insertion of i Ŝi (u) in corre-
lation functions of the kind 〈B[S, η]〉, which improperly will be denoted as
〈i Ŝi (u)B[S, η]〉, acts as differentiation with respect to hi (u), or, in turn, as in-
sertion of 1

2T ηi (u)

〈i Ŝi (u)B[S, η]〉 = ∂

∂hi (u)
〈B[S, η]〉 = 1

2T
〈B[S, η]ηi (u)〉 (8)

so that,

E
∂

∂ Ji,i2,...,i p

〈A[S, η]Si2 (t) . . . Si p (t)〉

=
∫ t

0
dv E

(
1

2T
〈ηi (v)Si2 (v) . . . Si p (v)A[S, η]Si2 (t) . . . Si p (t)〉

+
p∑

l=2

〈Si (v)Si2 (v) . . . ηil (v) . . . Si p (v)A[S, η]Si2 (t) . . . Si p (t)〉
)

+E

(〈
∂ log(µ(S(0)))

∂ Ji,i2,...,i p

A[S, η]Si2 (t) . . . Si p (t)

〉)

. (9)
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2.2. The Off-Equilibrium Case

If one chooses an initial distribution independent of the quenched coupling,
so that ∂ log(µ(S(0)))

∂ Ji,i2 ,...,i p
= 0, the last term in Eq. (9) is zero. I assume in this section

that this is the case, and that in addition µ is a translation invariant measure.
One can consider for instance the uniform measure on the set I = {S ∈ RLd

:
|�−1

∑
i∈Bx

S2
i − 1| < ε ∀x}.

Defining the empirical correlation function and response:

Ĉl(t, u) = 1

Rd

∑

i

ψ(|l − i |/R)Si (t)Si (u)

R̂l(t, u) = 1

2T Rd

∑

i

ψ(|l − i |/R)Si (t)ηi (u) (10)

one can rewrite Eq. (6) as:

E〈Ṡi (t)A[S, η]〉 = −E〈µx (t)Si (t)A[S, η]〉 + E〈A[S, η]ηi (t)〉

+ 1

Rd

∑

l

ψ(|l − i |/R)p

∫ t

0
dv E

×
(

1

2T
〈ηi (v)A[S, η]Ĉl(t, v)p−1〉

+ (p − 1)〈Si (v)A[S, η]R̂l (t, v)Ĉl(t, v)p−2〉
)

(11)

This is an exact equation valid for all values of L , R, and �. From this equation
one sees that if for typical realization of thermal noise and initial conditions, in
the Kac limit the empirical functions Ĉl(t, u) and R̂l(t, u) are self-averaging and
tend to space homogeneous (l-independent) limiting functions C(t, u) and R(t, u),
then the Lagrange multipliers would be x independent and one would have:

E〈Ṡi (t)A[S, η]〉 = −µ(t)E〈Si (t)A[S, η]〉 + E〈A[S, η]ηi (t)〉

+p

∫ t

0
dv E

(
1

2T
〈ηi (v)A[S, η]〉C(t, v)p−1

+ (p − 1)〈Si (v)A[S, η]〉R(t, v)C(t, v)p−2
)
. (12)

where I have used 1
Rd

∑
l ψ(|l − i |/R) → 1. Being the previous formula valid for

any A, it implies, in law, the effective, single site Langevin equation:

Ṡ(t) = −µ(t)S(t) + η(t) + ξ (t) + (p − 1)
∫ t

0
dv C(t, v)p−2 R(t, v)S(v) (13)
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where ξ (t) is a Gaussian field with correlations (ξ (t)ξ (u)) = pC(t, u)p−1, and
subject to the consistency conditions:

C(t, u) = (S(t)S(u))

R(t, u) = 1

2T
(S(t)η(u)). (14)

where the bar indicates average over the distribution of the process. This process
coincides with the one found in mean field dynamics and predicts that while at
high temperature the system equilibrates after a finite time, at low temperatures
T < Td the system fails to equilibrate and enters an off-equilibrium aging regime
where the energy remains extensively higher then the equilibrium one.

As soon as one gets away from the Kac limit and the range of interaction is
finite, the relaxation time to equilibrium should be finite at least in the vicinity of
Td , and down to the temperature TK where mean-field predict a thermodynamic
phase transition to an ideal glassy state. What the analysis of the Kac limit is
telling, is that for large enough R the relaxation time is essentially R independent
at high temperature, while it becomes R dependent for temperatures T <∼Td .

A proof of self-averaging and existence of the limit for the empirical correla-
tion and response in the Kac limit can be envisaged according to the lines of Ref. 8
for the mean field case. The main formal difference with respect to that case is that
the white average over sites that is responsible for the self-averaging properties
of the correlation and response functions in mean-field is here substituted by the
weighed average (10). The self-averaging property, with existence of the limit,
should appear when the number of variables participating to the average diverges.
Space homogeneity follows from the hypothesis of statistical homogeneity of the
initial condition.

For the analysis that will follow it is interesting to investigate the behavior of
the fluctuations for finite L , R and �. of correlation and response on the scale � of
the boxes Bx . In particular, I would like to argue that the system is homogeneous
and that the typical largest local fluctuation of the correlation on finite time is
small. Equation (13) suggests indeed that for fixed times t, s, typical fluctuations
of correlations and responses (5) are of order O(�−d/2). Assuming the existence
of a finite correlation length beyond which fluctuations become effectively inde-
pendent, one can naively estimate the order of magnitude of the largest fluctuation
supposing of being in presence of O((L/�)d ) Gaussian independent events of width
O(�−d/2). This gives a maximum fluctuation of order O(

√
log(L)/�d ), which the

hierarchical choice (3) of the length scales guarantees to be arbitrarily small. In
these condition virtually no heterogeneity on the scale � can be observed for short
(i.e. R-independent) time.
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2.3. Equilibrium Dynamics

To study the largest time scales in the system we need to understand equilib-
rium dynamics. As in the previous section, let us consider the Kac limit. The main
difference with the off-equilibrium case is that the distribution of the initial state

µ(S0) = 1

Z
e−β H (S0) (15)

now depends on the quenched couplings. In the derivation to the analogous of
Eq. (12) one should keep into account that

∂ log µ(S)

∂ Ji,i2,...,i p

= β(Si1 , . . . , Si p − 〈Si1 , . . . , Si p 〉eq) (16)

this gives rise to an additional term into the exact Eq. (13) for E〈Ṡi (t)A[S, η]〉,
that then reads:

E〈Ṡi (t)A[S, η]〉 = −µx (t)E〈Si (t)A[S, η]〉 + E〈A[S, η](ηi (t) + hi (t))〉

+ 1

Rd

∑

l

ψ(|l − i |/R)p

∫ t

0
dv E

×
(

1

2T
〈ηi (v)A[S, η]Ĉl(t, v)p−1〉

+ (p − 1)〈Si (v)A[S, η]R̂l(t, v)Ĉl(t, v)p−2〉
)

+ 1

Rd

∑

l

ψ(|l − i |/R)E〈Si (0)A[S, η]Ĉl (t, 0)p−1〉

−
∑

l,i2,...,i p

1

R pd

∑

l

ψ(|l − i |/R)
p∏

r=2

ψ(|l − ir |/R)

×βE
(〈A[S, η]Si2 (t) . . . Si p (t)〉〈Si Si2 . . . Si p 〉eq

)
(17)

In order to write closed equations in this case, besides hypothesizing the self-
averaging condition for Ĉl and R̂l discussed in the previous section, one needs to
know the structure of the equilibrium correlations that appear in (17). The results
of Ref. 18 imply that the static correlations on length scales of order R, tend to the
corresponding mean field function in the limit. I discuss here to the regime Tk <

T < Td where these static correlations are vanishingly small in the limit, so that the
last term in (17) will be zero. In equilibrium conditions the fluctuation dissipation
theorem and time translation invariance holds and R(t, s) = R(t − s) = β

∂C(t−s)
∂s .

The resulting equation for C reduces after a little algebra to the usual equilibrium
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mean field equation: (22)

dC(t)

dt
= −T C(t) + p

2T

∫ t

0
ds C p−1(t − s)

dC(s)

ds
(18)

The behavior of this equation is very well known. Above Td the correlation func-
tion decays to its equilibrium value limt→∞ C(t) = 0, while below Td , ergodic-
ity is broken and limt→∞ C(t) = qEA. qEA is the Edwards–Anderson parameter,
which does not coincide with the static value of the correlations in the Kac limit
limR→∞ 1

�d

∑
i∈Bx

E〈Si 〉2
equil = 0.

In this temperature region the Kac limit does not commute with the large
time limit. A system with a finite but large R, for a large time will follow closely
the evolution dictated by (18), but, eventually, will be able to relax below qEA on
R dependent time scales. Increasing R, one can make the relaxation time scale
as long as wanted, in particular, it can be chosen so long that the system has the
time to explore ergodically the region where the local correlations Cx (t) never
go below a certain value q0 < qEA. This is a crucial observation that allows to
identify typical equilibrium configurations as belonging to metastable states as it
will be discussed in the next section.

3. R DEPENDENT TIME SCALES

On time scales diverging with the interaction range, the independence be-
tween different spins, which is implied by the self-averaging property of the cor-
relation function, should fail and the mean-field dynamical equations loose their
validity. In order to investigate the relaxation below qEA I proceed in a different
manner, reminiscent of the Lebowitz and Penrose(21) analysis of metastability in
Kac models of first order phase transition.

As I previously discussed, as a consequence of the fact that the relaxation
time is divergent with R, for R large enough the equilibrium dynamics has the
time to explore ergodically the configurations such that for all the boxes Bx , the
correlation verifies Cx (t) > q0. This condition defines this set of configurations as
metastable state in the sense of Ref. 21. In fact one has the following properties:
1) The system finds itself in states of constrained equilibrium. 2) The time to leave
these states is large, but once departed much larger is the time to come back. 3) The
correlation function is homogeneous in space. Formally, for typical equilibrium
configurations S0

i , one can define a metastable state the restricted equilibrium
measure on the set R(S0) = {S ∈ I| qx (S, S0) > q0}, namely

µR(S0)(S) = 1

ZR(S0)
e−β H (S)1R(S0)(S). (19)

Notice that the states defined in this way do not form a partition of the equilibrium
manifold. In fact couples of states so defined, corresponding to two different
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reference equilibrium configurations can overlap if these configurations are close
enough to each other. Despite this fact, one can profitably describe the relaxation
as a passage from metastable state to metastable state, and estimate the relaxation
time as the inverse decay rate of these states. Denoting as H the Fokker–Plack
operator and as R(S0) the set complementary to R(S0), the decay rate of R(S0) is:

λ =
∫

S∈R(S0); S′∈R(S0)
d S d S′ 〈S′|H|S〉 × µR(S0)(S). (20)

This expression can be bounded from above noticing that the Fokker–Planck
operator is local, so that if S′ has to be in R(S0) then S has to be on the border of
R(S0),

∂R(S0) = {S ∈ R(S0)| ∃x0 : qx0 (S, S0) = q0}. (21)

Moreover, for any S, the integral
∫

d S′ 〈S′|H|S〉 can be bound by a constant C of
order one, and one estimates

λ ≤ C

∫

S∈∂R(S0)
d S µR(S0)(S) = C

Z∂R(S0)

ZR(S0)
(22)

Two comments are here in order: 1) Defined in this way, the escape rate λ, and its

estimate
Z∂R(S0)

ZR(S0) are functions of the reference configuration S0. One can expect
however that both quantities are self-averaging, i.e. assume values independent on
S0 with probability approaching 1 in the thermodynamic limit. This suggests to
consider

λt yp ∼ exp
[
E(log Z∂R(S0) − log ZR(S0))

] = exp(−β�F(q0)) (23)

where E stands here for Boltzmann–Gibbs average over the S0 and quenched
average over the Gaussian couplings. 2) The definition of R(S0) and of the decay
rate depend on the value q0, which defines a sort of amplitude of the state. The
“right” value optimizing the estimate, is the one such that a local equilibrium
fluctuation of size q0 has equal probability to be reabsorbed in R(S0) and to drive
the system out of it. This, together with the fact that what we get is a lower bound
for the decay rate, suggests that analogously to first order transition kinetics, (23)

one should maximize �F(q0) with respect to q0.
We get a relation between the relaxation time and a free-energy barrier defined

coupling the system with a reference configuration. On general ground one can
expect the barrier to be proportional to the interaction volume Rd . In the next
section I will discuss some theoretical techniques to compute the barrier.

4. THE COMPUTATION OF THE BARRIER

I would like to discuss here possible strategies for the computation of the
barrier. This is a hard task and my discussion will be highly conjectural. One
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needs to compute, for S = R or S = ∂R, the following free-energy:

FS = −T

〈〈−1

Z

∫

d S0e−β H (S0) log
∫

d Se−β H (S)1R(S0)(S)

〉〉

(24)

where I denoted with 〈〈·〉〉 the average over the quenched couplings Ji1,...,i p . This
free-energy will consist in an extensive term plus corrections. In considering the
difference, the extensive term and the corrections due to finite size effects should
compensate in the difference and only the term, finite in the thermodynamic limit,
which is related to the relaxation time survives. From the previous analysis, it is
clear that FR is dominated by the configurations such that in all the boxes Bx

one has that qx (S, S0) = qEA. On the other hand, the restricted partition function
Z∂R(S0) can be written as a sum over all sites x0 of partition sums restricted to the
configurations such that qx0 (S, S0) = q0, namely,

Z∂R(S0) =
∑

x0

Zx0 (25)

Zx0 =
∫

S∈R(S0); qx0 (S,S0)=q0

d Se−β H (S) (26)

One can expect Zx0 to be dominated by a single configuration consisting in a
localized excitation of linear size O(R) around the point x0. For large R, for most
sites x0 these excitations will become self-averaging and independent of the site x0.
The partition function Z∂R(S0) will receive contributions from these sites, but could
also receive contributions from exceptional sites particularly keen to excitation
and where the relaxation would be initiated with the highest probability. At present
I do not have a clear cut argument to decide if the dominant contribution to the
barrier is given by typical or exceptional sites. In favor of the first hypothesis one
could argue that the condition � � log L should guarantee that too exceptional
sites are absent from typical samples. If this is the case, any site x0 is equally likely
to initiate the relaxation independently of S0. In favor of the second one, one could
argue that relaxation below qEA proceeds through amplification of small O(�−d/2)
fluctuations in the initial condition. This kind of amplification effect has been
observed in realistic short range glass models, where sites that exhibit faster then
average relaxation in the fast regime, are more likely to initiate the slow part of the
relaxation. (24) In that cases however the interaction range cannot be considered a
large parameter.

At any rate, the free-energy F∂R(S0) can be estimated through the the replica
method, taking advantage of the identity

E(F∂R(S0)) = lim
m→0
n→0

−T

〈〈

Zm−1
∫

d S0e−β H (S0)
(
Zn

∂R(S0)(S0) − 1
)
/n

〉〉

. (27)
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As usual, the computation is performed starting from integer values of m and
n, and continuing to real values using a an appropriate modification of Parisi
ansatz to take into account the constraints. It should be possible as in case of the
computation of the unconstrained free-energy, to relate the replica computations
to a variational principle in the space of “random overlap structures,” (25) but in
this paper I will not pursue this path. Instead, I will sketch the outline of the replica
computation of the free-energy in the simplest possible approximation.(13,20,26) For
integer n and m the average over the quenched noise can be explicitly performed.
One has to introduce local overlaps between replicas

Qa,b
x = 1

�d

∑

i∈Bx

Sa
i Sb

i a, b = 1, . . . , n + m (28)

where the replicas from 1 to m − 1 describe the normalization Zm−1, replica
number m describes S0 and replicas from m + 1 to m + n describe configurations
in R(S0). In terms of these order parameters one can write the replicated partition
function as

Zrepl =
∫ ∏

a>m

dxa
0

∫

Qm,a
x ≥q0; Qm,a

x0 =q0 ∀a>m
DQe− 1

T F[Q] (29)

where F[Q] is a coarse grained replica free-energy. (19)

F[Q] = Rd S[Q] = Rd
∫ L/�

0
dd x

[
K ({Qα,β}, x) + V (Q(x))

]
(30)

with

K (Qα,β, x) = −β

2

∑

α,β

[ f (Q̂α,β(x)) − f (Qα,β(x))]

V (Q) = −β

2

∑

α,β

f (Qα,β) − 1

2β
Tr log Q (31)

and I defined

Q̂α,β(x) =
∫

dy ψ(x − y)Qα,β(y). (32)

Notice that thanks to the scaling F[Q] = Rd S[Q] for large R one can evaluate the
integral (29) by saddle point. I would like here just briefly discuss the results of
the simplest ansatz for the matrix Qab(x), obtained assuming replica symmetry. It
is clear from (27) that the integer n and m partition function is invariant under the
group of Sm−1 × Sn of permutation of the m − 1 replicas (a = 1, . . . , m − 1 in
our notation) coming from the denominator among themselves and the n (a = m +
1, . . . , n + m) replicas in ∂R(S0) among themselves. Within the replica symmetric
framework one chooses xa

0 = x0 for all a > m. This ansatz for xa
0 is the translation
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into the replica formalism of the hypothesis discussed above that independently of
x0 all sites are equally likely to start the relaxation. Replica symmetry also implies
that following structure of the matrix Qab(x):

Qa,b(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 a = b

s(x) a �= b a, b = 1, . . . , m − 1

p(x) a < m, b > m or a > m, b < m

q(x) a = m, b > m or a > m, b = m

r (x) a �= b a, b ≥ m

(33)

It can be seen(26) that the equation for s(x) decouples from the other variables
and is solved by s(x) = p(x) = 0. As far as the other parameter are concerned,
a further simplification consists in considering saddle points with r (x) = q(x),
which can be verified to exist. (13) With this ansatz, the various terms of the free-
energy become, in the limit of small n:

K ({q(x)}, x) = −n
β

2
[q̂ p(x) − q p(x)]

V (q(x)) = −n

(
β

2
q p(x) + 1

2β
[log(1 − q(x)) + q(x)]

)

. (34)

and the action functional

S =
∫

dx[K (x) + V (x)] (35)

V (q) is a single minimum function at high temperature (T > Td ), while it has
two minima below. The free-energy difference between the minima is known to
be equal to the configurational entropy per spin (T ) in the mean-field model, i.e.
the logarithm of the multiplicity of ergodic components divided by the volume.
(26) Within the simple approximation in which the replica matrix is parametrized
in term of a single space dependent parameter, one is in presence of a Landau
like field theory analogous to the one for systems with a first order transition. The
free-energy barrier can the be estimated through instantonic techniques, looking
at the minimum action solution with boundary condition equal to qEA at infinity
and to q0 in x0. (11,13) Close to Tk , where the two minima become degenerate, this
results in a conventional droplet theory where the free-energy barrier results from
an effective droplet model where a bulk free-energy, in this case proportional to
the configurational entropy, competes with a boundary term, which for the nature
of the theory is just a surface term. The detailed computation of the barrier. (13)

leads to a Vogel–Fulcher like expression

�F = Rd C(T )

(T )γd
(36)
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with γd = d − 1 and C(T ) a regular function of T . This computation supports
in the context of a microscopic model the phenomenological “entropic droplet”
arguments first introduced in Ref. 4 and recently revived in Ref. 12. Formula
(36) is obtained in the replica symmetric approximation and could be changed
by considering better saddle points. About this result I have mixed feelings: On
the one hand one finds a Adam–Gibbs like relation of inverse proportionality
between configurational entropy and free-energy barrier, which is a good thing.
On the other, in the relation one finds an exponent γd = d − 1 which would
predict a lower critical dimension of 1 for the ideal glass transition and would
be equal to 2 in three D. This is at variance with the expectation, based on the
Adam–Gibbs theory and verified in numerical simulations of model glasses, of a
linear relation between the free-energy barrier and inverse configurational entropy
in three dimensions. I believe that while the general form �F = Rd C(T )

(T )γd only
depends on the fact that the bulk free-energy difference between the minima is
the configurational entropy, should be robust to improvements of the calculation,
the value of γd could be modified by better approximations. One can envisage two
sort of modifications in the replica computation: 1) Within the ansatz that xa

0 is
independent of a, to find better saddle points for the matrix Qa,b(x). This has been
attempted in Ref. 14 where an replica broken solution to the instantonic problem
has been found. Unfortunately, this solution though changing the function C(T ),
it does not change the exponent γd . It is my opinion that saddle points in this class
cannot modify the exponent. 2) One can consider more complex configurations
where the position xa

0 of the center of the instanton depends on a. Saddle points
of this kind would break the replica symmetry in a vectorial way, (27) and could
lead to a different value of the exponent γd . The search of new saddle point to the
replica variational problem will be matter of future research.

5. CONCLUSIONS

In this paper I presented the beginning of the analysis of the dynamics of
the spherical p-spin model with Kac kind of interactions. I argued in favor of the
existence, both in off-equilibrium and equilibrium dynamics at low temperature,
of two different time regimes for large R. There is a first regime where dynamical
time scales are independent (or quasi-independent) of R. Evidence for this regime
is reached observing that in local correlations and responses should verify the
dynamical mean-field equations of the infinite range model in the Kac limit. I am
confident that the dynamical equations in this regime will be fully mathematically
justified. Then there is a second dynamical regime, on time scales diverging with
R, where the system manages to explore ergodically the configuration space. The
extreme separation of scales that one has for large R allows the description of
the dynamics as a passage between metastable states that are explored ergodically
before being abandoned. Thanks to that property, the relaxation time can be
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estimated as the escape time from typical states and related to a well-defined
free-energy barrier. The computation of this barrier is unfortunately a highly non-
trivial problem. We presented here a simple attempt based on replica symmetry
predicting an ideal glass transition for the mode in dimension d > 1 and giving
a modified Adam–Gibbs relation between free-energy barrier and configurational
entropy. The simple theory we have sketched could fail due to several kinds of
replica symmetry breaking effects. While we believe that the general relation will
continue to be valid, the value of the exponent in modified Adam–Gibbs relation
and then the lower critical dimension for the ideal glass transition could be changed
in the ultimate theory.
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